Learning doesn't have to happen in a lecture environment, says Bruce Tucker, associate vice-president, academic affairs. That's why he is excited to see the campus preparing for the first UWin Week.

"When I was teaching, I would have loved to have a week like this, when I wasn't tied to the course material," he says.

The week, which runs October 13 to 16, means a break from classes in all programs, except those in the Centre for Executive Education, the Faculty of Law, and the Faculty of Education's consecutive program. Dr. Tucker says it is intended to allow educators the freedom to get creative with their approach to imparting knowledge.

"The breadth of planned activities is impressive, varying in each faculty, department, and program," he says. A list of activities is available at www.uwindsor.ca/uwinweek and also at the end of this post.

The Department of Mathematics and Statistics is going to observe the week with many activities as well. We have arranged statistical software demo, consulting sessions, and sessions about how to improve grades in Mathematics.

I have a consulting meeting scheduled with the Director of the Centre for Statistical Consulting, Research, and Learning Services. Someone is coming to get some help in analyzing his research project. I hope to get some first hand experience from my first ever consulting meeting here in Windsor.

Apart from us, the University itself has a lots of activities for the freshmen, first-year, and upper-year students. They've listed top 10 reasons to attend the first-ever UWin Week. 

It’s designed to enhance student success
9. It offers smart tips for term paper success
8. There are unique faculty/departmental sessions
7. Pick up strategies in the Supplements for Success sessions
6. You’ve got time to explore your career possibilities
5. You can learn strategies for surviving the stress
4. You can learn more about opportunities to get involved at UWindsor
3. Campus services and supports are waiting to meet you
2. Experts are on call all week
1. It’s the chance to assess where you are and how to successfully navigate the rest of the term

What is it about the UWin Week?

This is what the university is offering:

  • NEED help with a stubborn project? Can't find everything you need to write that tricky term paper?
  •  NEED some time to catch up on assignments or to get the help you need to carry on to the end of term? 
  • NEED to talk with someone about your career plans?
For First Year Students
 Student studying.
UWin Week offers you an opportunity to get a head start on the rest of the semester by:
  • Receiving some assistance with lab or writing assignments
  • Attending study sessions with upper-year students who know how to do well in your courses
  • Learning to manage your time more effectively
  • Meeting with an academic advisor
Professors and advisors are here to help you make the most of the remaining weeks of the semester and to make plans for a successful second term.

Upper Year Students

UWin Week offers you an opportunity to meet with faculty to: 
  • Obtain career counselling related to your academic major
  • Obtain information on graduate study scholarships
  • Discuss professional and graduate school application procedures
UWin Week also provides a great opportunity to do group work or to get a head start on papers or research assignments.

For more information and activity and how to get involved, please visit http://www.uwindsor.ca/uwinweek/


The Canadian education system encompasses both publicly-funded and private universities. Education institutions are not officially ranked in Canada, as all Canadian educational institutions offer high quality programs. Check the world Rankings instead!

As an international student, though, studying without university/scholarship funding is not a reality for most of the people. Throughout Canada, universities support the graduate international students in the form of Teaching Assistant/Research Assistant income. As most of them are fully funded (covers the whole period of study - which is self-sufficient in most of the cases), getting admission in such universities is very competitive.

Those who are interested, please join this workshop to know more about it in general.


Basic reasons for the special attraction of Canadian Education:

Bright Asian students who prefers to stay in academia, seek to continue their higher studies abroad. They are very eager to get admission in an university in the north America / Canada. The reason is simple - education in north America is incomparable & unbeatable to any other places. People who comes here successfully, finds their inbox filled up once in a while from their country people asking for the information and help about admission process. This document is basically for them. Instead of repeating the same thing for each one of them, now you can just send them this link from now on!!!

The other day I saw a three dimensional scatterplot in Montgomery's Regression book. I wanted to redraw the graph using the provided data. A simple google search revealed that there is a package called scatterplot3d. The scatterplot3d() can be used to draw a 3-dimensional scatter plot. Here is what the steps are:

Download and install the package from your nearest CRAN.
Load the package using the command library(scatterplot3d)

Use the attached file to run the following code in R.

d1<-read.table("65-555-reg.txt", header=T)
d2<-data.frame(time=c(d1[,1]), cases=c(d1[,2]), distance=c(d1[,3]))
attach(d2)
scatterplot3d(cases, distance, time, angle=20, col.axis="blue",
col.grid="lightblue", main="Three-dimensional scatterplot",
pch=21, box=F, cex.symbols=2)
detach(d2)




Data file (save the data in a file. I called it 65-555-reg.txt)

time cases distance
16.68 7 560
11.5 3 220
12.03 3 340
14.88 4 80
13.75 6 150
18.11 7 330
8 2 110
17.83 7 210
79.24 30 1460
21.5 5 605
40.33 16 688
21 10 215
13.5 4 255
19.75 6 462
24 9 448
29 10 776
15.35 6 200
19 7 132
9.5 3 36
35.1 17 770
17.9 10 140
52.32 26 810
18.75 9 450
19.83 8 635
10.75 4 150

External sources:
The original PDF document.
Author's (Uwe Ligges) Webpage

 

Testing latex on blogger

The sample mean $\bar{X}$ is read as $x-$bar. The regression coefficient $\hat{\beta}$ is estimated using least squares criterion.


General Forms
$\int u^n \ dv = \frac{u^{n+1}}{n+1}+C, \quad n \ne -1$
 $\int u \ du = uv -\int v \ du$
$\int \frac{du}{u} = \ln |u| +C$

$\int e^u \ du = e^u +C$
$\int a^u \ du = \frac{a^u}{\ln a} +C$

Now I am testing how to enter code:


d1<-read.table("65-555-reg.txt", header=T)
d2<-data.frame(time=c(d1[,1]), cases=c(d1[,2]), distance=c(d1[,3]))
attach(d2)
scatterplot3d(cases, distance, time, angle=20, col.axis="blue",
col.grid="lightblue", main="Three-dimensional scatterplot",
pch=21, box=F, cex.symbols=2)
detach(d2)

Here is an encouraging post in New York Times newspaper about the prospect of statistics as a subject matter that will dominate the world in the coming years. Please spend some time to read it. It is a must -read for those studying statistics, particularly Applied Statistics in Bangladesh. The main report is written by Steve Lohr for the NY Times, published on August 5, 2009. Please read below.

At Harvard, Carrie Grimes majored in anthropology and archaeology and ventured to places like Honduras, where she studied Mayan settlement patterns by mapping where artifacts were found. But she was drawn to what she calls “all the computer and math stuff” that was part of the job.

“People think of field archaeology as Indiana Jones, but much of what you really do is data analysis,” she said.

Now Ms. Grimes does a different kind of digging. She works at Google, where she uses statistical analysis of mounds of data to come up with ways to improve its search engine.

Ms. Grimes is an Internet-age statistician, one of many who are changing the image of the profession as a place for dronish number nerds. They are finding themselves increasingly in demand — and even cool.

“I keep saying that the sexy job in the next 10 years will be statisticians,” said Hal Varian, chief economist at Google. “And I’m not kidding.”

The rising stature of statisticians, who can earn $125,000 at top companies in their first year after getting a doctorate, is a byproduct of the recent explosion of digital data. In field after field, computing and the Web are creating new realms of data to explore — sensor signals, surveillance tapes, social network chatter, public records and more. And the digital data surge only promises to accelerate, rising fivefold by 2012, according to a projection by IDC, a research firm.

Yet data is merely the raw material of knowledge. “We’re rapidly entering a world where everything can be monitored and measured,” said Erik Brynjolfsson, an economist and director of the Massachusetts Institute of Technology’s Center for Digital Business. “But the big problem is going to be the ability of humans to use, analyze and make sense of the data.”

The new breed of statisticians tackle that problem. They use powerful computers and sophisticated mathematical models to hunt for meaningful patterns and insights in vast troves of data. The applications are as diverse as improving Internet search and online advertising, culling gene sequencing information for cancer research and analyzing sensor and location data to optimize the handling of food shipments.

Even the recently ended Netflix contest, which offered $1 million to anyone who could significantly improve the company’s movie recommendation system, was a battle waged with the weapons of modern statistics.

Though at the fore, statisticians are only a small part of an army of experts using modern statistical techniques for data analysis. Computing and numerical skills, experts say, matter far more than degrees. So the new data sleuths come from backgrounds like economics, computer science and mathematics.

They are certainly welcomed in the White House these days. “Robust, unbiased data are the first step toward addressing our long-term economic needs and key policy priorities,” Peter R. Orszag, director of the Office of Management and Budget, declared in a speech in May. Later that day, Mr. Orszag confessed in a blog entry that his talk on the importance of statistics was a subject “near to my (admittedly wonkish) heart.”

I.B.M., seeing an opportunity in data-hunting services, created a Business Analytics and Optimization Services group in April. The unit will tap the expertise of the more than 200 mathematicians, statisticians and other data analysts in its research labs — but that number is not enough. I.B.M. plans to retrain or hire 4,000 more analysts across the company.

In another sign of the growing interest in the field, an estimated 6,400 people are attending the statistics profession’s annual conference in Washington this week, up from around 5,400 in recent years, according to the American Statistical Association. The attendees, men and women, young and graying, looked much like any other crowd of tourists in the nation’s capital. But their rapt exchanges were filled with talk of randomization, parameters, regressions and data clusters. The data surge is elevating a profession that traditionally tackled less visible and less lucrative work, like figuring out life expectancy rates for insurance companies.

Ms. Grimes, 32, got her doctorate in statistics from Stanford in 2003 and joined Google later that year. She is now one of many statisticians in a group of 250 data analysts. She uses statistical modeling to help improve the company’s search technology.

For example, Ms. Grimes worked on an algorithm to fine-tune Google’s crawler software, which roams the Web to constantly update its search index. The model increased the chances that the crawler would scan frequently updated Web pages and make fewer trips to more static ones.

The goal, Ms. Grimes explained, is to make tiny gains in the efficiency of computer and network use. “Even an improvement of a percent or two can be huge, when you do things over the millions and billions of times we do things at Google,” she said.

It is the size of the data sets on the Web that opens new worlds of discovery. Traditionally, social sciences tracked people’s behavior by interviewing or surveying them. “But the Web provides this amazing resource for observing how millions of people interact,” said Jon Kleinberg, a computer scientist and social networking researcher at Cornell.

For example, in research just published, Mr. Kleinberg and two colleagues followed the flow of ideas across cyberspace. They tracked 1.6 million news sites and blogs during the 2008 presidential campaign, using algorithms that scanned for phrases associated with news topics like “lipstick on a pig.”

The Cornell researchers found that, generally, the traditional media leads and the blogs follow, typically by 2.5 hours. But a handful of blogs were quickest to quotes that later gained wide attention.

The rich lode of Web data, experts warn, has its perils. Its sheer volume can easily overwhelm statistical models. Statisticians also caution that strong correlations of data do not necessarily prove a cause-and-effect link.

For example, in the late 1940s, before there was a polio vaccine, public health experts in America noted that polio cases increased in step with the consumption of ice cream and soft drinks, according to David Alan Grier, a historian and statistician at George Washington University. Eliminating such treats was even recommended as part of an anti-polio diet. It turned out that polio outbreaks were most common in the hot months of summer, when people naturally ate more ice cream, showing only an association, Mr. Grier said.

If the data explosion magnifies longstanding issues in statistics, it also opens up new frontiers.

“The key is to let computers do what they are good at, which is trawling these massive data sets for something that is mathematically odd,” said Daniel Gruhl, an I.B.M. researcher whose recent work includes mining medical data to improve treatment. “And that makes it easier for humans to do what they are good at — explain those anomalies.”

Original post at NY Times.